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The UHF Hamiltonian and simple L6wdin-like annihilators are formulated in 
the second quantization formalism. The so formulated Hamiltonian was 
employed in many-body Rayleigh-Schri3dinger perturbation theory to evaluate 
the corrections to the UHF orbital energies. 
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1. Introduction 

Many methods based on the orbital model (Hartree-Fock theory) exist in quantum 
chemistry which include the spin correlation effects in systems with open electronic 
shells. The most important among them are: the unrestricted Hartree-Fock theory 
(UHF) [1], the unrestricted method with projection [2] (or annihilation [3, 4]), and 
the extended Hartree-Fock method [5, 6]. The wave function in the unrestricted 
Hartree-Fock theory represents one Slater determinant, and the electrons with 
different spins occupy different space orbitals. The direct use of unrestricted methods 
is disadvantageous as the unrestricted wave function is not an eigenfunction of S 2 
(it contains the contaminations of higher multiplicity states). The projected (or 
annihilated) Hartree-Fock method yields the spin-projected (or annihilated) wave 
function from an UHF wave function after energy minimization. However, such a 
wave function does not obey the variation condition. In the extended Hartree-  
Fock theory the wave function minimalizes the energy after spin projection of a 
single Slater determinant. 

In contrast to the restricted SCF methods for open shells (Roothaan or method by 
Longuet-Higgins and Pople), the orbital energies in the unrestricted SCF method 
have, as in closed-shell systems, a simple physical interpretation; i.e. they represent 
the ionization energies for removing one electron from a definite level of the studied 
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radical neglecting correlation and relaxation effects. In other words the well known 
Koopmans theorem [7] can be used in unrestricted SCF methods keeping in mind 
the above mentioned difficulties with spin contamination. 

In ionization energy calculations (or, accurately speaking, in the calculation of 
corrections to the orbital energies) one can employ the current procedures based on 
many-body perturbation theory [8-15]. These methods have been frequently used 
in calculations of many closed-shell systems. 

In the present paper our attention is focused first on the formulation of the UHF 
Hamiltonian and simple L6wdin-like annihilators within the second quantization 
formalism, and then in the second step, we give the many-body theory of ionization 
energies using the unrestricted wave function with annihilation. 

The UHF SCF wave function (but unprojected) has also been used by Purvis and 
Ohm [16]. They obtained, solving the Dyson equation with a second-order self 
energy and using the Grand Canonical averaging procedure, a theoretical photo- 
electron spectrum of the oxygen molecule. 

2 .  S e c o n d  Q u a n t i z a t i o n  F o r m u l a t i o n  o f  U H F  H a m i l t o n i a n  

a n d  S p i n - A n n i h i l a t i o n  O p e r a t o r  

Let us define a set of creation X + and annihilation X~ operators on a space of one- 
electron wave function for spin or. The UHF ground state wave function can be 
then written 

15o) = 1--[  X~X~[O) (1) 
i~<l,Ncr 
j~<I,NB> 

where 10) is the vacuum state vector, N=, and Na are the numbers of ~- and fl-spin 
electrons, respectively. 

The total Hamiltonian in the second quantization has the following form 

1 <taJa Ig[kala )X~Xj~,X~o,Xk~ (2) H = <ig[hIj~)X~+XJ~ + 2 ~.j,~.z 

where h is the one-electron, and g thetwo-electron operator. 

It is easy to show that, after simple algebraic manipulations with creation and 
annihilation operators, the normal form of Hamiltonian (2) is 

H = <4o[H]4o> + ~ ~,~N[X~+~X~] 

1 �9 �9 v , + + + 2 ~z <t~ja [g]kala )N[X,o Xj~,,X,~,Xk~] (3) 

where d~,~ is the UHF orbital energy for spin a, and N [ . . .  ] means the normal 
product defined with respect to Iq~0>. 
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We see that the Hamiltonian (3) in the UHF method has formally the same normal 
form as its counterpart in the Hartree-Fock theory of closed-shell systems [17], in 
contrast to the Hamiltonian in the restricted Hartree-Fock theory of open-shell 
systems, where an additional one-electron interaction term arises [1 8]. 

The UHF wave function consists of components with various multiplicity and it 
can be generally written as 

N~ 

195o) = ~ C~'+r195s'+r) (4) 
r = O  

where S' = (N~ - N~)/2 and s = s' + N B are the indices of components with 
lowest and highest multiplicity, respectively. 

Amos et al. [3, 4] have shown that the most important components in 1r are 
those with r = 0 and r = 1, and that the coefficients with r > 1 are negligibly 
small. They proposed to use a simple projector-annihilator, so that 

195s) = As195o) (5) 

where 

A s =  S 2 -  ( s +  1 ) ( s + 2 )  (6) 

is the annihilator and I95s) is the component with multiplicity (2s + 1). 

We suppose for the sake of simplicity that the spin annihilator A~ is an idempotent 
operator. Since this operator commutes with every spin-free operator d~, the mean 
value of an operator is given by 

( C) = (95olOAs]r (7) 

Introducing the modified spin annihilator aer 

= Aj(95olAs[95o) (8) 

the norm of the function (5) in which A~ is replaced by ar is 

<95s195s> = 1. (9) 

In the following we focus our attention on the second quantization form of the spin 
annihilator (8). One can show, after simple but tedious algebraic operations with an 
immediate use of Wick's theorem, that the normal form of this operator is 

~ f f , ~ ,  + + ~ + 
As = 1 + 2 ,jk, ~ .//r N[X, ,X~ ,Xu .X , , . ]  + ~ J V ' , , N [ X ,  oXyo] (10) 

where the matrix elements ~ dg,m and ~/'~j are defined by the relations 

de'ijkz = ~'~j ~'kl cm, ce~a 8~ 8 8o,~ 8,~ 8,,a, (1 la) 

/Zt~ 
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k i 

-- <ij/g/kl) 

I j 

J ~ i ~  = vt/'~ 
ij 

jr _~'o',rr. k [ k ~ , ~  = ,.,,HUk I 

Fig. 1. The diagrammatic interpretation of the perturbation//1 and matrix elements ~2n,2 
and W?~ 

In these expressions the 3's are the Kronecker delta symbols, 5P~'7 represents the 
overlap integral between spatial parts of spinorbitals lie) and l j r ) ,  i.e. 

~ . ~  = { io]j , )  (12) 

where in a given basis of atomic orbitals {]if)} the spinorbital lie) is 

l ie)  = ]io)]e) = ~ C~'i]ff)lcr ). (13) 

We will now suppose the orthonormality of the atomic orbitals {Iff)}. The entity PT~ 
in expression (1 lb) is the element of the density matrix 

PT,,, = ~ C;,CJ~. (14) 

The mean value of the spin annihilator As in state Ir can be written as 

{ADo = % o l & t r  = �89 - Ne)  2 + a(N~ + N,) 

- Tr (papa)  _ (s + 1)(s + 2). (15) 

This equation is valid only for an orthonormal set of orbitals {1/~)}. 

The annihilator s~ acting on the wave function Ir generates the mono- and bi- 
excited states. Its diagrammatic interpretation (namely of its one- and two-electronic 
parts together with a diagrammatic representation of the perturbation //1 = 
�89 Z~J~ . . . .  , ( i@r'Ig[kale')N[X~+~ X~ ,X~ ,Xk~] )  is illustrated in Fig. 1. 

3. Calculation of  Ionization Energies Using the U H F  SC Method 

As mentioned in the Introduction, some difficulties arise in the application of un- 
restricted SCF orbitals. Using these orbitals in the calculations of ionization 



UHF Orbitals in Ionization Energy Calculations 19 

energies in systems with one or more unpaired electrons, it becomes very difficult 
to define the spin multiplicity of the individual states. 

Despite these complications we will subsequently formulate, using the annihilation 
of the first higher multiplicity state, the perturbation corrections to the orbital 
energies. We will restrict our considerations to the first-order of perturbation 
theory, which gives in closed-shell systems generally no contribution to the 
perturbation corrections. 

Let us suppose that the ground electronic state of an open-shell electronic system is 
described by the wave function (1). The model space f~o corresponding to singly 
ionized states is then spanned by the following vectors 

1r o)) = X,~lr ). (16) 

These vectors are the eigenfunctions of the unperturbed Hamiltonian H0 = 

Hole(i, ~)> -- -~,~Ir ~)>. (17) 

Because of the spin contamination of the state vector }r we will use the spin- 
annihilated state vector 1r Then the new model space f2~ spanned by the un- 
perturbed vectors can be introduced 

1r a)) = X,o[r (18) 

In a similar way as in the preceding case, these vectors are also the eigenvectors of 
the unperturbed Hamiltonian 

Holes(i, a)) = ~~ a)[r , or)). (19) 

For the energy g}~ or) we can write the following expression 

g~~ a) = - ~ ( 1  + A~ + B~,) + C,7o + D~. (20) 

The individual coefficients in expression (20) are 

a ~  = <a~)o ~ ~ .A/'~ (21a) 
I 

B~ = <A,)ff 1 ~ J~';~,2h~h~ (21b) 
I I  

Cg~ = <A~)o 1 ~ (gpa, - gho,)JVg~ (21c) 
I 

- - ~ z ~  (21d) Df~ = (A~)ol ~ (d~p~a~ + Cp~o~ d~ @h2~2)~C~'pzp~h~ 
I I  

where the summations ~ ,  ~= are defined 

I h~&i~G'r II hl~inZl~G h2r162 
h~<l,o"> hl,h26<lgNz> pl,P2> NaI,NG2 

The eigenenergy 6~sm>(i, a) represents the zeroth-order orbital energy with annihila- 
tion of the first higher multiplicity state. 
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Fig. 2. First order diagrams 

Keeping in mind the mathematical properties of the operator ~r (see part 2) then 
the first order perturbation correction to the orbital energies is given by 

6~}1'(i, e) = (r cr)]Hllr or)). (23) 

Using the diagrammatic interpretation of individual components of the annihilator 
~r and perturbation H1 (Fig. 1), the first-order term (23) can be expressed in Gold- 
stone diagrammatic technique by two diagrams (Fig. 2). 

The algebraic interpretation of diagrams in Fig. 2 has the following form 

g}a~(i, or) = ~ ((i~ho,[g}iopo,) - (i,,h~,lgtp~io))JV'g'h. (24) 
h , p  

c7 

Analogously, it is possible to present the higher-order perturbation terms; of 
course, these diagrams and their algebraic interpretation will have a more 
complicated form. 

4.  C o n c l u d i n g  R e m a r k s  

In the preceding parts we have shown that it is possible to calculate the orbital 
energies of radical systems within the UHF SCF method, in which the first higher 
multiplicity state is annihilated. Because of the correlation and relaxation correc- 
tions (by perturbation theory), the calculated orbital energies are expected to be 
good approximations to the ionization energies. The resulting formulae are 
relatively simple and suitable for direct use on the computer. 

In conclusion, we would like to point out our belief that the theoretical formalism 
developed in this paper could be of use for studying the low-lying ionization 
energies of  any open-shell molecular or atomic system. 
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